Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 391: 110910, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364885

RESUMO

Aldehyde dehydrogenase 1A (ALDH1A) isoforms may be a useful target for overcoming chemotherapy resistance in high-grade serous ovarian cancer (HGSOC) and other solid tumor cancers. However, as different cancers express different ALDH1A isoforms, isoform selective inhibitors may have a limited therapeutic scope. Furthermore, resistance to an ALDH1A isoform selective inhibitor could arise via induction of expression of other ALDH1A isoforms. As such, we have focused on the development of pan-ALDH1A inhibitors, rather than on ALDH1A isoform selective compounds. Herein, we report the development of a new group of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in HGSOC. Optimization of the CM10 scaffold, aided by ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular efficacy as demonstrated by reduction in ALDEFLUOR signal in HGSOC cells, and substantial improvements in liver microsomal stability. Based on this work we identified two compounds 17 and 25 suitable for future in vivo proof of concept experiments.


Assuntos
Isoenzimas , Neoplasias , Humanos , Aldeído Desidrogenase/metabolismo , Retinal Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo
2.
Pharmacol Res Perspect ; 10(6): e01028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36426895

RESUMO

Bleomycin-induced lung fibrosis is a debilitating disease, linked to high morbidity and mortality in chemotherapy patients. The MRTF/SRF transcription pathway has been proposed as a potential therapeutic target, as it is critical for myofibroblast differentiation, a hallmark of fibrosis. In human lung fibroblasts, the MRTF/SRF pathway inhibitor, CCG-257081, effectively decreased mRNA levels of downstream genes: smooth muscle actin and connective tissue growth factor, with IC50 s of 4 and 15 µM, respectively. The ability of CCG-257081 to prevent inflammation and fibrosis, measured via pulmonary collagen content and histopathology, was tested in a murine model of bleomycin-induced lung fibrosis. Animals were given intraperitoneal bleomycin for 4 weeks and concurrently dosed with CCG-257081 (0, 10, 30, and 100 mg/kg PO), a clinical anti-fibrotic (nintedanib) or the clinical standard of care (prednisolone). Mice treated with 100 mg/kg CCG-257081 gained weight vs. vehicle-treated control mice, while those receiving nintedanib and prednisolone lost significant weight. Hydroxyproline content and histological findings in tissue of animals on 100 mg/kg CCG-257081 were not significantly different from naive tissue, indicating successful prevention. Measures of tissue fibrosis were comparable between CCG-257081 and nintedanib, but only the MRTF/SRF inhibitor decreased plasminogen activator inhibitor-1 (PAI-1), a marker linked to fibrosis, in bronchoalveolar lavage fluid. In contrast, prednisolone led to marked increases in lung fibrosis by all metrics. This study demonstrates the potential use of MRTF/SRF inhibitors to prevent bleomycin-induced lung fibrosis in a clinically relevant model of the disease.


Assuntos
Bleomicina , Fibrose Pulmonar , Humanos , Animais , Camundongos , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Inflamação , Fibroblastos , Prednisolona
3.
Bioorg Med Chem Lett ; 46: 128171, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098081

RESUMO

We have previously reported the development of indole-based CNS-active antivirals for the treatment of neurotropic alphavirus infection, but further optimization is impeded by a lack of knowledge of the molecular target and binding site. Herein we describe the design, synthesis and evaluation of a series of conformationally restricted analogues with the dual objectives of improving potency/selectivity and identifying the most bioactive conformation. Although this campaign was only modestly successful at improving potency, the sharply defined SAR of the rigid analogs enabled the definition of a three-dimensional pharmacophore, which we believe will be of value in further analog design and virtual screening for alternative antiviral leads.


Assuntos
Alphavirus/efeitos dos fármacos , Antivirais/farmacologia , Indóis/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Indóis/síntese química , Indóis/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
RSC Adv ; 11(33): 20089-20100, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34168865

RESUMO

Mycobacterium tuberculosis (Mtb) senses and adapts to host immune cues as part of its pathogenesis. One environmental cue sensed by Mtb is the acidic pH of its host niche in the macrophage phagosome. Disrupting the ability of Mtb to sense and adapt to acidic pH has the potential to reduce survival of Mtb in macrophages. Previously, a high throughput screen of a ∼220 000 compound small molecule library was conducted to discover chemical probes that inhibit Mtb growth at acidic pH. The screen discovered chemical probes that kill Mtb at pH 5.7 but are inactive at pH 7.0. In this study, AC2P20 was prioritized for continued study to test the hypothesis that it was targeting Mtb pathways associated with pH-driven adaptation. RNAseq transcriptional profiling studies showed AC2P20 modulates expression of genes associated with redox homeostasis. Gene enrichment analysis revealed that the AC2P20 transcriptional profile had significant overlap with a previously characterized pH-selective inhibitor, AC2P36. Like AC2P36, we show that AC2P20 kills Mtb by selectively depleting free thiols at acidic pH. Mass spectrometry studies show the formation of a disulfide bond between AC2P20 and reduced glutathione, supporting a mechanism where AC2P20 is able to deplete intracellular thiols and dysregulate redox homeostasis. The observation of two independent molecules targeting free thiols to kill Mtb at acidic pH further supports that Mtb has restricted redox homeostasis and sensitivity to thiol-oxidative stress at acidic pH.

5.
PLoS One ; 16(2): e0246408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556134

RESUMO

The emergence of antibiotic resistance over the past several decades has given urgency to new antibacterial strategies that apply less selective pressure. A new class of anti-virulence compounds were developed that are active against methicillin-resistant Staphylococcus aureus (MRSA), by inhibiting bacterial virulence without hindering their growth to reduce the selective pressure for resistance development. One of the compounds CCG-211790 has demonstrated potent anti-biofilm activity against MRSA. This new class of anti-virulence compounds inhibited the gene expression of virulence factors involved in biofilm formation and disrupted the biofilm structures. In this study, the physicochemical properties of CCG-211790, including morphology, solubility in pure water or in water containing sodium dodecyl sulfate, solubility in organic solvents, and stability with respect to pH were investigated for the first time. Furthermore, a topical formulation was developed to enhance the therapeutic potential of the compound. The formulation demonstrated acceptable properties for drug release, viscosity, pH, cosmetic elegance and stability of over nine months.


Assuntos
Antibacterianos , Biofilmes , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fatores de Virulência/metabolismo
6.
Eur J Med Chem ; 211: 113060, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341649

RESUMO

There is strong evidence that inhibition of one or more Aldehyde Dehydrogenase 1A (ALDH1A) isoforms may be beneficial in chemotherapy-resistant ovarian cancer and other tumor types. While many previous efforts have focused on development of ALDH1A1 selective inhibitors, the most deadly ovarian cancer subtype, high-grade serous (HGSOC), exhibits elevated expression of ALDH1A3. Herein, we report continued development of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in this critical tumor subtype. Optimization of the CM39 scaffold, aided by metabolite ID and several new ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular ALDH inhibition in HGSOC cell lines, and substantial improvements in microsomal stability culminating in orally bioavailable compounds. We demonstrate that two compounds 68 and 69 are able to synergize with chemotherapy in a resistant cell line and patient-derived HGSOC tumor spheroids, indicating their suitability for future in vivo proof of concept experiments.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Aldeído Desidrogenase/farmacologia , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
7.
ACS Chem Neurosci ; 11(20): 3464-3473, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33035424

RESUMO

There remain no approved therapies for rare but devastating neuronopathic glyocosphingolipid storage diseases, such as Sandhoff, Tay-Sachs, and Gaucher disease type 3. We previously reported initial optimization of the scaffold of eliglustat, an approved therapy for the peripheral symptoms of Gaucher disease type 1, to afford 2, which effected modest reductions in brain glucosylceramide (GlcCer) in normal mice at 60 mg/kg. The relatively poor pharmacokinetic properties and high Pgp-mediated efflux of 2 prompted further optimization of the scaffold. With a general objective of reducing topological polar surface area, and guided by multiple metabolite identification studies, we were successful at identifying 17 (CCG-222628), which achieves remarkably greater brain exposure in mice than 2. After demonstrating an over 60-fold improvement in potency over 2 at reducing brain GlcCer in normal mice, we compared 17 with Sanofi clinical candidate venglustat (Genz-682452) in the CBE mouse model of Gaucher disease type 3. At doses of 10 mg/kg, 17 and venglustat effected comparable reductions in both brain GlcCer and glucosylsphingosine. Importantly, 17 achieved these equivalent pharmacodynamic effects at significantly lower brain exposure than venglustat.


Assuntos
Doença de Gaucher , Animais , Inibidores Enzimáticos/farmacologia , Doença de Gaucher/tratamento farmacológico , Glucosiltransferases , Camundongos , Pirrolidinas/farmacologia
8.
Mol Pharmacol ; 97(6): 392-401, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234810

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the µ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the µ-opioid receptor most efficaciously because it has the ability to cross cell membranes.


Assuntos
Indazóis/química , Paroxetina/química , Pirimidinas/química , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Animais , Western Blotting , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Feminino , Células HEK293 , Humanos , Indazóis/farmacologia , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirimidinas/farmacologia
9.
ACS Chem Neurosci ; 11(16): 2450-2463, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32027110

RESUMO

With roughly 2 billion people infected, the neurotropic protozoan Toxoplasma gondii remains one of the most pervasive and infectious parasites. Toxoplasma infection is the second leading cause of death due to foodborne illness in the United States, causes severe disease in immunocompromised patients, and is correlated with several cognitive and neurological disorders. Currently, no therapies exist that are capable of eliminating the persistent infection in the central nervous system (CNS). In this study we report the identification of triazine nitrile inhibitors of Toxoplasma cathepsin L (TgCPL) from a high throughput screen and their subsequent optimization. Through rational design, we improved inhibitor potency to as low as 5 nM, identified pharmacophore features that can be exploited for isoform selectivity (up to 7-fold for TgCPL versus human isoform), and improved metabolic stability (t1/2 > 60 min in mouse liver microsomes) guided by a metabolite ID study. We demonstrated that this class of compounds is capable of crossing the blood-brain barrier in mice (1:1 brain/plasma at 2 h). Importantly, we also show for the first time that treatment of T. gondii bradyzoite cysts in vitro with triazine nitrile inhibitors reduces parasite viability with efficacy equivalent to a TgCPL genetic knockout.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Catepsina L , Sistema Nervoso Central , Humanos , Camundongos , Nitrilas/farmacologia , Proteínas de Protozoários , Toxoplasmose/tratamento farmacológico , Triazinas/farmacologia
10.
ACS Med Chem Lett ; 10(12): 1628-1634, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31857838

RESUMO

The ability of G protein-coupled receptor (GPCR) kinases (GRKs) to regulate desensitization of GPCRs has made GRK2 and GRK5 attractive targets for treating heart failure and other diseases such as cancer. Although advances have been made toward developing inhibitors that are selective for GRK2, there have been far fewer reports of GRK5 selective compounds. Herein, we describe the development of GRK5 subfamily selective inhibitors, 5 and 16d that covalently interact with a nonconserved cysteine (Cys474) unique to this subfamily. Compounds 5 and 16d feature a highly amenable pyrrolopyrimidine scaffold that affords high nanomolar to low micromolar activity that can be easily modified with Michael acceptors with various reactivities and geometries. Our work thereby establishes a new pathway toward further development of subfamily selective GRK inhibitors and establishes Cys474 as a new and useful covalent handle in GRK5 drug discovery.

12.
J Med Chem ; 62(9): 4350-4369, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30951312

RESUMO

Through a phenotypic high-throughput screen using a serum response element luciferase promoter, we identified a novel 5-aryl-1,3,4-oxadiazol-2-ylthiopropionic acid lead inhibitor of Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated gene transcription with good potency (IC50 = 180 nM). We were able to rapidly improve the cellular potency by 5 orders of magnitude guided by sharply defined and synergistic SAR. The remarkable potency and depth of the SAR, as well as the relatively low molecular weight of the series, suggests, but does not prove, that binding to the unknown molecular target may be occurring through a covalent mechanism. The series nevertheless has no observable cytotoxicity up to 100 µM. Ensuing pharmacokinetic optimization resulted in the development of two potent and orally bioavailable anti-fibrotic agents that were capable of dose-dependently reducing connective tissue growth factor gene expression in vitro as well as significantly reducing the development of bleomycin-induced dermal fibrosis in mice in vivo.


Assuntos
Ácidos Carboxílicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Fibrose/tratamento farmacológico , Oxidiazóis/uso terapêutico , Fator de Resposta Sérica/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Animais , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacocinética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Feminino , Fibrose/patologia , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores
13.
J Labelled Comp Radiopharm ; 62(5): 202-208, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30828860

RESUMO

As part of a program toward making analogues of amlexanox (1), currently under clinical investigation for the treatment of type 2 diabetes and obesity, we have synthesized derivative 5 in which deuterium has been introduced into two sites of metabolism on the C-7 isopropyl function of amlexanox. The synthesis of 5 was completed in an efficient three-step process utilizing reduction of key olefin 7b to 8 by Wilkinson's catalyst to provide specific incorporation of di-deuterium across the double bond. Compound 5 displayed nearly equivalent potency to amlexanox (IC50 , 1.1µM vs 0.6µM, respectively) against recombinant human TBK1. When incubated with human, rat, and mouse liver microsomes, amlexanox (1) and d2 -amlexanox (5) were stable (t1/2  > 60 minutes) with 1 showing marginally greater stability relative to 5 except for rat liver microsomes. These data show that incorporating deuterium into two sites of metabolism does not majorly suppress Cyp-mediated metabolism relative to amlexanox.


Assuntos
Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Deutério/química , Microssomos/metabolismo , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Técnicas de Química Sintética , Estabilidade de Medicamentos , Humanos , Marcação por Isótopo , Cinética , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos
14.
Cell Rep ; 26(11): 3061-3075.e6, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865894

RESUMO

Ovarian cancer is typified by the development of chemotherapy resistance. Chemotherapy resistance is associated with high aldehyde dehydrogenase (ALDH) enzymatic activity, increased cancer "stemness," and expression of the stem cell marker CD133. As such, ALDH activity has been proposed as a therapeutic target. Although it remains controversial which of the 19 ALDH family members drive chemotherapy resistance, ALDH1A family members have been primarily linked with chemotherapy resistant and stemness. We identified two ALDH1A family selective inhibitors (ALDH1Ai). ALDH1Ai preferentially kills CD133+ ovarian cancer stem-like cells (CSCs). ALDH1Ai induce necroptotic CSC death, mediated, in part, by the induction of mitochondrial uncoupling proteins and reduction in oxidative phosphorylation. ALDH1Ai is highly synergistic with chemotherapy, reducing tumor initiation capacity and increasing tumor eradication in vivo. These studies link ALDH1A with necroptosis and confirm the family as a critical therapeutic target to overcome chemotherapy resistance and improve patient outcomes.


Assuntos
Família Aldeído Desidrogenase 1/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Necroptose , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Retinal Desidrogenase/antagonistas & inibidores , Antígeno AC133/genética , Antígeno AC133/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação Oxidativa , Retinal Desidrogenase/metabolismo
15.
ACS Pharmacol Transl Sci ; 2(2): 92-100, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32039344

RESUMO

A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-ß- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.

16.
Bioorg Med Chem Lett ; 29(2): 148-154, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528696

RESUMO

The mitotic spindle is a microtubule-based machine that segregates a replicated set of chromosomes during cell division. Many cancer drugs alter or disrupt the microtubules that form the mitotic spindle. Microtubule-dependent molecular motors that function during mitosis are logical alternative mitotic targets for drug development. Eg5 (Kinesin-5) and Kif15 (Kinesin-12), in particular, are an attractive pair of motor proteins, as they work in concert to drive centrosome separation and promote spindle bipolarity. Furthermore, we hypothesize that the clinical failure of Eg5 inhibitors may be (in part) due to compensation by Kif15. In order to test this idea, we screened a small library of kinase inhibitors and identified GW108X, an oxindole that inhibits Kif15 in vitro. We show that GW108X has a distinct mechanism of action compared with a commercially available Kif15 inhibitor, Kif15-IN-1 and may serve as a lead with which to further develop Kif15 inhibitors as clinically relevant agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Cinesinas/antagonistas & inibidores , Sondas Moleculares/farmacologia , Oxindóis/farmacologia , Quinazolinonas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinesinas/metabolismo , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Oxindóis/síntese química , Oxindóis/química , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade
18.
J Nanobiotechnology ; 16(1): 97, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482196

RESUMO

BACKGROUND: Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. RESULTS: The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. CONCLUSIONS: Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.


Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Fator de Resposta Sérica/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Doenças da Túnica Conjuntiva/tratamento farmacológico , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose/tratamento farmacológico , Humanos , Lipossomos/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Coelhos , Distribuição Tecidual , Transativadores/antagonistas & inibidores , Transativadores/química
19.
J Med Chem ; 61(19): 8754-8773, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30221940

RESUMO

Aldehyde dehydrogenase (ALDH) activity is commonly used as a marker to identify cancer stem-like cells. The three ALDH1A isoforms have all been individually implicated in cancer stem-like cells and in chemoresistance; however, which isoform is preferentially expressed varies between cell lines. We sought to explore the structural determinants of ALDH1A isoform selectivity in a series of small-molecule inhibitors in support of research into the role of ALDH1A in cancer stem cells. An SAR campaign guided by a cocrystal structure of the HTS hit CM39 (7) with ALDH1A1 afforded first-in-class inhibitors of the ALDH1A subfamily with excellent selectivity over the homologous ALDH2 isoform. We also discovered the first reported modestly selective single isoform 1A2 and 1A3 inhibitors. Two compounds, 13g and 13h, depleted the CD133+ putative cancer stem cell pool, synergized with cisplatin, and achieved efficacious concentrations in vivo following IP administration. Compound 13h additionally synergized with cisplatin in a patient-derived ovarian cancer spheroid model.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Família Aldeído Desidrogenase 1 , Animais , Proliferação de Células , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/classificação , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Retinal Desidrogenase , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Bioorg Med Chem Lett ; 28(9): 1507-1515, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627263

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) regulate the desensitization and internalization of GPCRs. Two of these, GRK2 and GRK5, are upregulated in heart failure and are promising targets for heart failure treatment. Although there have been several reports of potent and selective inhibitors of GRK2 there are few for GRK5. Herein, we describe a ligand docking approach utilizing the crystal structures of the GRK2-Gßγ·GSK180736A and GRK5·CCG215022 complexes to search for amide substituents predicted to confer GRK2 and/or GRK5 potency and selectivity. From this campaign, we successfully generated two new potent GRK5 inhibitors, although neither exhibited selectivity over GRK2.


Assuntos
Amidas/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Amidas/síntese química , Amidas/química , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...